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Abstract 

In multi-view learning, multimodal representations of a real 

world object or situation are integrated to learn its overall 

picture. Feature sets from distinct data sources carry 

different, yet complementary, information which, if analysed 

together, usually yield better insights and more accurate 

results. Neuro-degenerative disorders such as dementia are 

characterized by changes in multiple biomarkers. This work 

combines the features from neuroimaging and cerebrospinal 

fluid studies to distinguish Alzheimer’s disease patients from 

healthy subjects. We apply statistical data fusion techniques 

on 101 subjects from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. We examine whether fusion of 

biomarkers helps to improve diagnostic accuracy and how the 

methods compare against each other for this problem. Our 

results indicate that multimodal data fusion improves 

classification accuracy.  
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Introduction 

Multimodal data fusion refers to the fusion of multiple data 

sources, their associated features, and (or) intermediate 

decisions to perform an analysis task [1]. This multimodel 

method has found widespread use in areas such as multimedia 

and sensor analyses to integrate views obtained from audio 

and video signals, texts and images, and others. Recent studies 

in medical informatics have benefitted from combining 

multiple data sources to better understand disease processes. 

In this paper, we study the impact of multimodal data fusion 

on classifying Alzheimers’ Disease (AD) patients. 

Dementia is a spectrum of neuro-degenerative disorders that 

lead to memory and cognitive decline, severe enough to 

disable a person to perform activities of daily living. AD, the 

most common subtype, affects close to 75% of the demented 

population. As of 2010, there are around 36 million affected 

individuals worldwide, and an enormous amount is spent on 

their care [2]. No definitive prevention methods/cures are 

available for AD. Hence, we need efficient methods to screen 

and study the disease early on, so that timely interventions 

may delay its progression. 

Dementia severity is assessed by psychometric tests like Mini 

Mental State Examination (MMSE) and Clinical Dementia 

Rating (CDR), neuroimaging, protein and genomic tests, and 

others. Biomarkers acquired from these tests provide 

indicators about a person’s state. The sensitivity of biomarkers 

varies over the stages from normal aging through Mild 

Cognitive Impairment (MCI) to Dementia, as evident from 

Figure 1 [3]. Recently, pattern classification methods have  

 

been applied to analyze these biomarkers in combinations [10, 

11, 12], as the information from different biomarkers is 

complementary in nature. While structural Magnetic  

Resonance Imaging (s-MRI) has good spatial resolution to 

identify atrophied brain regions,  functional imaging such as 

Fluodeoxyglucose Positron Emission Tomography (FDG-

PET) reveals hypometabolism in the affected brain areas. 

Protein studies of the Cerebrospinal Fluid (CSF) indicate the 

presence of beta amyloid (Aβ42) and tau (τ) proteins which 

form plaques and tangles in the brain, characteristic of AD. 

Combining multiple related data sources yields a fused 

representation of the object under study. Analysing this 

representation yields a comprehensive picture that benefits 

from the interplay of statistical dependences of the data 

sources. Further, the analysis reduces noise in the data by 

averaging it out over the independent data sources.   

 

Figure 1. Biomarker sensitivity to Dementia related changes 

in the human brain across stages. Used with permission from 

the website of National Institute of Aging [3]. 

Motivated by these facts, we examine the effectiveness of 

statistical methods for fusing biomarker data to distinguish 

AD patients from healthy subjects (HS). On a subset of data 

from ADNI, we compare three data fusion methods based on: 

1. Canonical Correlation Analysis (CCA) 

2. Multiple Kernel Learning (MKL) 

3. Collective Matrix Factorization (CMF) 

While CCA ensures that the fused representation has 

maximally correlated features, MKL learns the optimal way to 

combine the features to yield the best classification accuracy. 

CMF is a comparatively recent method that jointly factorizes 

matrices that share a common dimension. We explain, 

implement, and test these methods on the ADNI data to 

compare their accuracies of classification over unimodal and 

prior multimodal studies.  
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Related Work 

Quantitative fusion of medical data is very challenging 

because of the heterogeneity of the modalities. Two main 

approaches exist for combining heterogeneous information. 

The first approach, known as early fusion, aggregates data at 

the feature level into a single representation before analysis. 

Kernel space combination proposed by Lanckriet et al. to 

combine amino acid sequences and gene expressions [4], 

vector concatenation of Principal Component Analysis (PCA) 

reduced features used by Lee et al. to fuse mass spectrometry 

and histology information [5], and Artificial Neural Networks 

(ANN) used by Baez et al. to integrate various 

neuropsychological test scores [6] all fall under this category. 

Though these methods preserve inter-source dependencies, 

they suffer from the curse of dimensionality and hence require 

a large amount of training data to learn a relevant model. The 

second approach, known as late fusion, combines decisions 

from models learnt on the individual feature spaces. Various 

rules such as weighted combination [7], majority voting [8], 

likelihood maximization [9] of the decision variables have 

been proposed. As the fusion is at the level of decisions, there 

are no concerns with the dimensionality of the data. However, 

these methods fail to retain inter-source dependencies. 

Multimodal assessments of AD and MCI were found to 

classify diseased individuals more accurately than unimodal 

methods. Zhang et al. combined MRI, PET and CSF 

biomarkers using multiple kernels and a coarse grid search to 

find the optimal kernel combination on a Support Vector 

Machine (SVM) classifier [10]. As compared to this 

discriminative approach which models the conditional 

distribution of variables for predicting the class labels from 

features, Young et al. used a variation of kernel combination 

with a generative Gaussian Process (GP) classifier [11]. This 

generative approach models the joint distribution of variables 

and uses likelihood maximization to learn the optimal 

parameters; it is shown to perform on par with the earlier 

discriminative approach. Gray et al. applied Random Forest 

(RF) proximity measures to combine MRI and PET features 

[12]. Though these methods provide good classification 

accuracy, they cannot in general support understanding of the 

data and their interactions. Moreover, these methods do not 

handle missing data or specific data types such as ordinal data. 

There are three general multiview learning approaches: 

weighted view combination, multiview dimension reduction, 

and subspace learning. Inspired by the promising results of  

previous multimodal analyses, we aim to explore the 

effectiveness of three representative methods from the 

categories, CCA (multiview dimension reduction), MKL 

(weighted view combination), and CMF (subspace learning),   

for combining multimodal biomarker features for AD 

diagnosis. While Zhang et al. [10] and Young et al. [11] used 

MKL, only linear combination of kernels was explored. CCA 

and CMF have not been used in the context of fusing 

biomarkers for AD diagnosis. The fused representation should 

generalize well to related problems of supervised learning 

such as classification and unsupervised learning for 

understanding the association between biomarkers. 

Methods 

The goals of data fusion are as follows: 

1. Reducing the dimensionality of the participating views, so 

that the fused representation has the most representative 

components of the individual views. 

2. Explaining the nature of relationships between datasets by 

measuring the relative contribution of each variable to an 

analysis task. 

3. Learning a joint subspace from the different views that 

supports interpreting the datasets well enough to handle 

missing data. 

We explore the ability of three popular data fusion techniques 

in attaining these goals. In the implementations, we consider 

biomarker data as matrices where the rows correspond to 

subjects and columns to features. 

Canonical Correlation Analysis 

CCA seeks to find linear projections of two sets of 

multidimensional variables, so that the projections are 

maximally correlated [13]. Correlation as a relationship is 

heavily dependent on the chosen coordinate system; therefore, 

even if there is a strong linear relationship between two sets of 

multidimensional variables, the relationship might not be 

visible as a correlation.  

Mathematically, if x and y are two multidimensional random 

variables with zero mean and wa
Tx and wb

Ty are their 

corresponding linear projections, maximizing their correlation, 

ρ,  corresponds to solving Equation (1). If Cab is the cross-

covarianve, Caa and Cbb are the auto-covariance matrices, 

max��,��
ρ �  ��
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CCA is often formulated as a generalized eigenvalue problem 

where the maximum correlation corresponds to the largest 

eigenvalue. 
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Several extensions to the original CCA have been proposed to 

include more than two views, and to find non-linear 

relationships between views. Currently, we restrict ourselves 

to the linear version because it is faster and involves easily 

interpretable components. The most commonly used approach 

to include three or more, say p data sources is to sum up the 

correlations (mCCA). The generalized eigenvalue problem 

then accounts for maximizing the sum of the correlations. This 

formulation is depicted in Figure 2.  

 

Figure 2. CCA based classification 

Tripathi et al. [13] proposed a two step procedure for 

summing up the correlations. First, the correlations within a 

data source are removed by a process called whitening. This is 

done by multiplying the individual data matrices with the 

square-root of their respective covariance matrices to find 

components shared between the views. Second, Principal 

Component Analysis (PCA) is applied to the column-wise 

concatenation of the whitened data sources. The original data 

is further projected on to the largest d PCA coefficients. The 

choice of d is based on the amount of shared variance. The 

smallest d, after which there is no significant increase in 

shared variance, is the optimal dimension of of the projection. 

The projection yields the fused representation which is then 

used by a classifier to learn the model.  
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Multiple Kernel Learning 

Kernel methods such as SVM, which are based on similarity 

measures between data points, have been used with great 

success for dimensionality reduction and classification. 

Kernelization projects the native space data to a higher 

dimensional feature space. Non-linear relations between 

variables in the original space become linear in the 

transformed space. The projection, ϕ is given by the mapping, 

�: � � ���, … , ��	 
 ���	 � �����	, … , ����		     (3) 

To project the data we use the kernel trick, wherein we apply 

kernel functions, κ1, …, κp, to get the corresponding kernel 

matrices K1,…, Kp. Each kernel, K = <ϕ(x), ϕ(z)> is an inner 

product of data points. Examples of kernel functions include 

the linear, radial bias function and others. 

Using more than one kernel often produces a better model. In 

MKL, data is represented as a combination of base kernels 

[10]. Each base kernel represents a different modality / feature 

of the entity. MKL seeks to find the optimal combination of 

the base kernels so that the analysis tasks which follow are 

benefitted the most. Classification tasks are especially well 

represented through MKL, as the optimal combination is the 

one that gives the maximum classification accuracy.  

The dual form of MKL optimization, as it is solved by 

conventional solvers like LIBSVM [14], is  
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From a set of n training samples, the features of the i-th 

sample from the m-th modality are in the vector xi
(m), and its 

corresponding class label,  yi is either +1 or -1. α's are the 

Lagrange multiplers which are the variables obtained on 

converting the primal support vectors to the dual problem. The 

kernel function applied on each pair of the samples from a 

modality m, is ����. The weights on the m-th modality kernel, 

represented as βm are optimized using a grid search or as a 

separate optimization problem with fixed α. For each new test 

sample, s, the kernel functions are computed against the 

training samples. The MKL overview is depicted in Figure 2. 

 

Figure 3. MKL based classification 

Zhang et al. [10] and Young et al. [11] used coarse grid search 

and likelihood maximization approaches respectively, to find 

the optimal kernel weights, β. They used only one linear base 

kernel for each of the feature sets and constrain the β’s to sum 

to 1 (): +)+� � 1; ) -0). This however may yield sparse 

solutions with certain kernels not being well-represented. 

Recent research has shown that including the base data sets in 

more than one kernel each differing in their selection of kernel 

parameters, improves performance [15]. Regularized MKL 

based on l2 norm (): +)+� � 1; ) -0) and l12 mixed norm 

(): +)+� $ 1; ) -0) for constraining β have been proposed. 

Though l2-regularized MKL yields non-sparse solutions, it no 

longer remains a convex optimization problem and hence is 

difficult to solve as the sample size increases. l12-regularized 

MKL involves more than one base kernel from a single 

modality. It enforces sparsity across modalities, while 

allowing more than one discriminative kernel to be chosen 

from the same modaility. In other words, there is sparsity 

across modailities and non-sparsity within modalities, thereby 

making it a convex optimization problem.   

Collective Matrix Factorization 

CMF is a technique in relational learning for predicting the 

unknown values of a relation, given a database of entities and 

their relations. It learns the low-rank approximations of the 

matrices which share entities [16]. 

Given a set of M matrices which describe the relations among 

E entities, CMF approximates them to low-rank factorizations. 

The matrices are approximated as a rank-L product and 

additional row and column bias terms. If rm and cm are the 

entity sets corresponding to the row and column respectively 

of the m-th matrix, on factorization, its element in the i-th row 

and j-th column is represented as: 

���
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Where, [uik
(e)] is the rank-L approximation of entity set e, 

bi
(m,r) and bj

(m,c) are the row and column biases respectively and 

εij
(m) is the element-wise noise. The matrices which share the 

same entity set share the same low-rank matrix approximation. 

Recent works arrange all the M matrices into a large square 

grid, whose dimension is the sum of cardinalities of all the 

entity matrices. However, in the resulting symmetric matrix, 

Y, only blocks corresponding to the M matrices are observed 

and the rest of the elements are left unobserved. The CMF 

model is then formulated as a symmetric matrix factorization, 

Y = UU
T
 + ε                                (6) 

where, U is the column-wise concatenation of different [uik
(e)] 

matrices and bias terms are dropped for simplicity [16]. 

 

Figure 4. CMF based modeling 

Experiments 

We implemented the multimodal fusion approaches described 

above, for integrating the MRI, PET and CSF biomarkers. We 

used the fused representation to classify a selected study group 

into patients with AD from healthy subjects (HS). The fused 

approach is considered successful if the classification task is 

performed with greater accuracy along with better precision 

and recall against unimodal classifications. Along with the 

unimodal approaches, we evaluated the classification of a 

concatenated data vector comprising data from the three 

modalities and used it as a baseline study. 
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The three modalities: MRI, PET and CSF, complement each 

other in the information they hold [10]; this enables us to draw 

better insights in a classification task. We used these three 

biomarkers specifically because, as shown in Figure 1, they 

compare better than the others in identifying AD early on.  

Data 

The data for evaluation was obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) [17]. We worked on 

baseline MRI images and FDG-PET images that were 

acquired within 30-60 min post injection. The image details 

are available at the ADNI website: http://adni.loni.usc.edu/. 

MMSE (0-30) score of >=27 and CDR (0-3) of 0 are 

considered normal. The demography of the subjects that we 

considered are shown in Table 1. 

Table 1– Subject Demography 

 AD (n = 51; 18F/33M) HS (n = 52; 18F/34M) 

 Mean SD Range Mean SD Range 

Age 75.2 7.4 59-88 75.3 5.2 62-85 

MMSE 23.8 2.0 20-26 29 1.2 25-30 

CDR 0.7 0.3 0.5-1 0 0 0 

Preprocessing 

The sequence of steps for processing the MRI images included 

setting the origin to the Anterior Commissure (AC), correcting 

intensity inhomogeneities, and performing skull stripping. As 

grey matter atrophy is a prominent feature in AD patients, we 

segmented the images into grey, white matter and the CSF. 

This segmentation and the subsequent steps were done using 

the Statistical Parametric Mapping (SPM) 8 toolbox [18]. To 

standardize the images of all the subjects, they were 

normalized to a study specific template created by the SPM 

DARTEL toolbox [19]. The PET images were co-aligned to 

the corresponding MRI  image using SPM8. Masks of 83 

brain regions enlisted in the atlas prepared by Kabani et al. 

[20] were created using a tool called WFU-PickAtlas [21]. 

These masks were imposed on the segmented gray matter and 

PET images to obtain the regional grey matter volume and the 

average intensity measurements respectively. Thus, we 

obtained a 1 × 83 sized feature vector per subject for each of 

the imaging modalities. The CSF values obtained from ADNI 

were represented as a 1 × 3 sized vector per subject 

representing the total tau, Aβ42 and p-tau values respectively.  

We implemented CCA and MKL fusion methods in 

MATLAB and used the R library ‘CMF’, for CMF. We tested 

the individual modalities and the concatenated feature vector 

(baseline) on the following classifiers: 

SVM –This discriminative classifier is accepted to be standard 

for binary classification. We used the popular LIBSVM [14] 

tool for our experiments. With unimodal data we used an RBF 

kernel with default parameters. 

GP –We used the GPML toolbox [22] and followed Young et 

al. [11] for the choice of covariance, mean, likelihood and 

inference functions.  

RF – As an ensemble classifier, we used a MATLAB version 

of R language’s RF library. The number of trees in the 

classifier were varied according to the dimensionality of the 

dataset under consideration. 

Each method was tested using 10-fold cross validation, 

categorizing subjects into ten groups based on a random 

permutation. Nine groups were used for the learning phase and 

the remaining group formed the test set. The accuracy, 

precision and recall of the classification tasks were studied. 

Three prior works in multimodal AD classification were 

reimplemented and tested with our dataset. 

Results  

The results of  our experiments are tabulated in Table 2. It is 

evident that a simple concatenation of the feature vectors 

(SVM (c), GP (c) and RF (c)) provides better classification 

results than unimodal tests. Prior multimodal biomarker based 

methods [10, 11, 12] have better classification accuracy than 

the baseline study (feature concatenation) as expected. 

However, the results are even better for classification on the 

fused representation obtained from the statistical methods like 

CCA and CMF.  

Discussion 

The concatenated feature vector consistently performs better 

across the three types of classifiers than individual biomarkers 

because of their complementary information. The poor 

performance of the baseline study in which there is no kernel 

combination, against the prior multimodal analyses of Zhang 

et al. and Gray et al. [10, 12], is due to the inclusion of all 

features and not just those which contribute to classification.   

The MKL formulation based on l12 mixed norm performs 

worse than Zhang et al.’s [10] but better than Young et al.’s 

[11] both of which are l1 norm based. As the mixed norm 

enforces group sparsity, it chooses features common across all 

participating modalities. In comparison, l1 norm and Gray et 

al.’s [12] RF based method choose features individually across 

modalities and ignores intermodal relationships. From this we 

understand that the common feature constraint may overlook 

certain modality specific features aiding classification. 

mCCA and CMF both perform better than the rest of the 

methods. These methods learn a generic model of the 

biomarkers, not specific for classification. But they perform 

the best on classification task as well.  This is because the 

generic model learnt from these techniques is built only on 

those relevant features or components that are statistically 

dependent across modalities. Though mCCA in its current 

form is incapable of handling missing entries it may be 

extended to handle them. CMF performs slightly poorer than 

mCCA in the classification task but is the most generic model. 

The three methods compare as follows, with respect to 

achieving the goals of data fusion: 

1. mCCA is effective in data exploration to find if there are 

any associations between the data sources. It saves what 

is shared between the views and ignores variations within, 

thereby achieving goals 1 and 2.  

2. If the goal is only supervised learning, MKL methods, l12 

and l1 based optimization [10, 11], can be applied directly 

as they learn the most distinguishing multimodal features, 

satisfying goal 1. However, such methods fail when there 

is missing data. Moreover, these methods lack a proper 

generative model for each view, and hence cannot be used 

for the task of understanding the data.  

3. CMF handles missing entries by treating them as test data 

and allows multiple likelihood functions for modeling the 

data. The benefit of using CMF is that it identifies 

common factors shared between matrices and factors 

specific to individual matrices. Matrix factorization 

results in dimensionality reduction and thus satisfies the 

three goals of data fusion. 

Conclusion 

We examined multimodal data fusion on a dataset consisting 

of heterogeneous biomarker data. We used three categories of 
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fusion methods based on CCA, MKL and CMF. Further, we 

used the resultant fused representation for classifying AD 

patients. We found that classifying based on the fused 

representation that preserves intermodal relationships yields 

better results than unimodal classification. Amongst the three 

methods, mCCA gives the best accuracy on our dataset closely 

followed by the CMF based method.  

Table 2– Region of Interest Based Classification 

Data Method 

 

Acc. 

Precision Recall 

AD HS AD HS 

MRI SVM 

GP 

RF 

82.7 

81.5 

82.7 

86.7 

86.8 

86.5 

79.3 

78.4 

85.4 

82.8 

76.8 

81.7 

78.4 

84.6 

81.6 

 

PET 

 

SVM 

GP 

RF 

 

85.5 

82.6 

81.5 

 

88.4 

84.2 

81.4 

 

86.4 

81.3 

87 

 

85.3 

82.1 

94 

 

84.3 

83.1 

73.6 

 

CSF 

 

SVM 

GP 

RF 

 

80.6 

81.5 

81.6 

 

81.2 

83.2 

83.7 

 

81.3 

83.9 

81.9 

 

83.1 

85.9 

82.6 

 

81.6 

78.9 

82.9 

 

MRI + 

PET + 

CSF 

 

[10] 

[11] 

[12] 

SVM (c) 

GP (c) 

RF (c) 

mCCA 

l12-MKL 

CMF 

 

92.4 

87.5 

91.5 

86.5 

89.3 

90.5 

95.1 

88.4 

94.4 

 

87.9 

87.9 

91.7 

88.6 

89.6 

88.3 

94.8 

86.6 

84.5 

 

86.4 

89.6 

91.7 

90 

93.7 

96.6 

97.1 

92.2 

96.3 

 

88.1 

87.7 

93.2 

88.2 

91.5 

95.5 

96 

92.9 

87.3 

 

84.7 

84.6 

90.6 

80.4 

82.9 

83.6 

94.2 

83.9 

87.3 
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